Rules for Differentiation

How to differentiate fancy looking functions

3-minute read
Made by ChickenFryBytes Studios
Table of Contents

We now know how to differentiate basic algebraic and trigonometric functions but how we differentiate the compositions, products and quotients of these functions?

Chain rule

Given the composition of two functions, $$ \begin{equation}\begin{aligned} y=f(u)\text{ where } u=g(x)\\ \end{aligned}\end{equation} $$

The derivative will be $$ \begin{equation}\begin{aligned} \frac{dy}{dx}=\frac{dy}{du}\times \frac{du}{dx}\\ \end{aligned}\end{equation} $$

Example 1

For example, consider the function $$ \begin{equation}\begin{aligned} y=\sin(x+1)\\ \end{aligned}\end{equation} $$ This function can be achieved by substituting $x+1$ into $\sin{x}$. Thus, it is a composition of two functions. We can let the inner function $x+1$ be $u$: $$ \begin{equation}\begin{aligned} u&=x+1\\ \therefore y&=\sin{u}\\ \end{aligned}\end{equation} $$

Since we have $y$ in terms of $u$, we find the derivative $$ \begin{equation}\begin{aligned} \frac{dy}{du}&=\cos{u}\\ \end{aligned}\end{equation} $$ From the substitution, we found $u$ in terms of $x$ so we can have the derivative $$ \begin{equation}\begin{aligned} \frac{du}{dx}&=1\\ \end{aligned}\end{equation} $$

Using the chain rule: $$ \begin{equation}\begin{aligned} \frac{dy}{dx}&=\frac{dy}{du}\times \frac{du}{dx}\\ &=\cos{u}\times 1\\ &=\cos{u}\\ \frac{dy}{dx}&=\cos(x+1)\\ \end{aligned}\end{equation} $$

Example 2

Differentiate the function $$ \begin{equation}\begin{aligned} y=\cos(x^2+2x)\\ \end{aligned}\end{equation} $$

We can let $u$ be the inner function $x^2+2x$: $$ \begin{equation}\begin{aligned} u&=x^2+2x\\ \therefore y&=\cos{u}\\ \end{aligned}\end{equation} $$

Having $y$ in terms of $u$ we find the derivative: $$ \begin{equation}\begin{aligned} \frac{dy}{du}&=-\sin{u}\\ \end{aligned}\end{equation} $$

Now with $u$ written in terms of $x$, the derivative is $$ \begin{equation}\begin{aligned} \frac{du}{dx}&=2x+2\\ \end{aligned}\end{equation} $$

Thus by the chain rule, the final derivative is $$ \begin{equation}\begin{aligned} \frac{dy}{dx}&=\frac{dy}{du}\times \frac{du}{dx}\\ &=-\sin{u}\times (2x+2)\\ \frac{dy}{dx}&=-(2x+2)\sin(x^2+2x)\\ \end{aligned}\end{equation} $$

Example 3

Find the derivative of the function $y=(5x+4)^7$

Here the inner function is $5x+4$ thus we can let this be $u$: $$ \begin{equation}\begin{aligned} u&=5x+4\\ \therefore y&=u^7\\ \end{aligned}\end{equation} $$

Now $y$ is in terms of $u$ which makes the derivative: $$ \begin{equation}\begin{aligned} \frac{dy}{du}&=7u^6\\ \end{aligned}\end{equation} $$

And with $u$ in terms of $x$: $$ \begin{equation}\begin{aligned} \frac{du}{dx}&=5\\ \end{aligned}\end{equation} $$

Therefore the full derivative is $$ \begin{equation}\begin{aligned} \frac{dy}{dx}&=\frac{dy}{du}\times \frac{du}{dx}\\ &=7u^6\times 5\\ &=35u^6\\ \frac{dy}{dx}&=35(5x+4)^6\\ \end{aligned}\end{equation} $$

Chain rule practice

Find the derivatives of the following compositions of functions:

  • $y=(x-1)^{10}$
  • $y=\sin(3x+4)$
  • $y=(x^3-\frac{1}{x})^5$
  • $y=\cos(\sqrt{x}+1)$

Product rule

This rule is used to find the derivative of the product of two functions: $$ \begin{equation}\begin{aligned} \frac{d}{dx}[fg]=fg'+gf'\\ \end{aligned}\end{equation} $$

Notice how whether $f$ or $g$, a function is never paired with its own derivative. Thus you will never see $ff’$ or $gg’$ in product rule.

Example

Given the function $$ \begin{equation}\begin{aligned} y=(x+3)(2x+1)\\ \end{aligned}\end{equation} $$

Because we have the product of two functions, we can find the derivative of the first function: $$ \begin{equation}\begin{aligned} \frac{d}{dx}[x+3]=1\\ \end{aligned}\end{equation} $$

And that for the second function: $$ \begin{equation}\begin{aligned} \frac{d}{dx}[2x+1]=2\\ \end{aligned}\end{equation} $$

Applying the product rule: $$ \begin{equation}\begin{aligned} \frac{dy}{dx}&=(x+3)(2) + (2x+1)(1)\\ &=2x+6+2x+1\\ &=4x+7\\ \end{aligned}\end{equation} $$

Note how $(x+3)$ is placed next to the derivative of the second function, $2$, and $(2x+1)$ is placed next to the derivative of the first function, $1$.

Product rule practice

Find the derivatives of the following functions:

  • $y=(x+1)\sin{x}$
  • $y=(x^2+3x)(-5x+7)$
  • $y=\sin{x}\cos{x}$
  • $y=(x^3-3x+4)(9x^2-4x)$
  • $f(x)=(11\sqrt{x}+2x)(\frac{1}{x}-1)$

Quotient rule

This rule is used to find the derivative of the quotient of two functions: $$ \begin{equation}\begin{aligned} \frac{d}{dx}[\frac{f}{g}]=\frac{gf'-fg'}{g^2}\\ \end{aligned}\end{equation} $$

Note that we begin with the function at the bottom (in this case, $g$).

Example

Given the quotient of two functions $$ \begin{equation}\begin{aligned} y=\frac{x-3}{5x+1}\\ \end{aligned}\end{equation} $$

We find the derivatives $$ \begin{equation}\begin{aligned} \frac{d}{dx}[x-3]&=1\\ \frac{d}{dx}[5x+1]&=5\\ \end{aligned}\end{equation} $$

Applying the quotient rule $$ \begin{equation}\begin{aligned} \frac{dy}{dx}&=\frac{(5x+1)(1)+(x-3)(5)}{(5x+1)^2}\\ &=\frac{5x+1+5x-15}{(5x+1)^2}\\ &=\frac{10x-14}{(5x+1)^2}\\ \end{aligned}\end{equation} $$

Quotient rule practice

Determine the derivatives of the following functions:

  • $y=\frac{2x-4}{x+5}$
  • $y=\frac{\sin{x}}{x^2-1}$
  • $y=\frac{x^4+5x}{7x^3-14}$
  • $y=\frac{5\cos{x}}{\sqrt{x}-2}$
  • $y=\frac{x}{x^4-8x+15}$

Support us via BuyMeACoffee