Projectile Motion

1-minute read
Made by ChickenFryBytes Studios
Table of Contents

Projectile motion is the motion of an object which is being influenced by gravity after being launched. The values which do not change for a projectile are:

  • $u_x=u\cos{\theta}$
  • $u_y=u\sin{\theta}$
  • $a_x=0$ (no horizontal forces)
  • $a_y=-g$ (the force of gravity acts vertically downwards, downwards being negative)

Applying the horizontal direction to the equation, $v=u+at$: $$ \begin{equation}\begin{aligned} v&=u+at\\ v_x&=u_x+a_xt\\ v_x&=u\cos{\theta}+(0)t\\ v_x&=u\cos{\theta}\\ v_x&=u_x\\ \end{aligned}\end{equation} $$

Applying the vertical direction to the equation, $v=u+at$: $$ \begin{equation}\begin{aligned} v&=u+at\\ v_y&=u_y+a_yt\\ v_y&=u\sin{\theta}+(-g)t\\ v_y&=u\sin{\theta}-gt\\ \end{aligned}\end{equation} $$

Applying the horizontal direction to the equation, $s=ut+\frac12at^2$: $$ \begin{equation}\begin{aligned} s&=ut+\frac12at^2\\ s_x&=u_xt+\frac12a_xt^2\\ s_x&=(u\cos{\theta})t+\frac12(0)t^2\\ s_x&=ut\cos{\theta}\\ \end{aligned}\end{equation} $$

Applying the vertical direction to the equation, $s=ut+\frac12at^2$: $$ \begin{equation}\begin{aligned} s&=ut+\frac12at^2\\ s_y&=u_yt+\frac12a_yt^2\\ s_y&=(u\sin{\theta})t+\frac12(-g)t^2\\ s_y&=ut\sin{\theta}-\frac12gt^2\\ \end{aligned}\end{equation} $$

Applying the horizontal direction to the equation, $v^2=u^2+2as$: $$ \begin{equation}\begin{aligned} v^2&=u^2+2as\\ v_x^2&=u_x^2+2a_xs_x\\ v_x^2&=(u\cos{\theta})^2+2(0)s_x\\ v_x^2&=u^2\cos^2{\theta}\\ \end{aligned}\end{equation} $$

Applying the vertical direction to the equation, $v^2=u^2+2as$: $$ \begin{equation}\begin{aligned} v^2&=u^2+2as\\ v_y^2&=u_y^2+2a_ys_y\\ v_y^2&=(u\sin{\theta})^2+2(-g)s_y\\ v_y^2&=u^2\sin^2{\theta}-2gs_y\\ \end{aligned}\end{equation} $$

Special formulae

The special formulae are time of flight, horizontal range and maximum height: $$ \begin{equation}\begin{aligned} \text{time of flight}&=\frac{2u\sin{\theta}}{g}\\ \text{horizontal range}&=\frac{u^2\sin{2\theta}}{g}\\ \text{max height}&=\frac{u^2\sin^2{\theta}}{2g}\\ \end{aligned}\end{equation} $$

Support us via BuyMeACoffee